Булевы мультипликативные формы

В.С. Выхованец (Приднестровский государственный университет)

Решение таких задач как логическое управление, дискретная оптимизация, обработка сигналов и изображений, распознавание образов, прогнозирование, принятие решений, моделирование дискретных устройств и т.д., сводится к логической обработке данных. Логическая обработка формализуется в алгебре логики и представляется в виде логической функции f(X), имеющую значность k_f и заданной на множестве из n аргументов $X = \left\{ X_{n-1}, \ldots, X_1, X_0 \right\}$, имеющих различную значность k_i , $i = \overline{0, n-1}$:

Известные методы логических вычислений своей структурой повторяют формульное описание функции [1]. Наименее изученными остаются вопросы, связанные с расширением форм представления логических данных с учетом операционных возможностей используемого вычислительного средства Основываясь на ранее полученных результатах [2], приведем обобщенную методику синтеза полиномиальных форм. Произвольную функцию представим в обобщенной полиномиальной форме:

$$f(X) = \sum_{i=0}^{k-1} A_i \times \left(C_i \delta_n X_{n-1}^{i_{n-1}} \delta_{n-1} \dots \delta_0 X_0^{i_0} \right) = \sum_{i=0}^{k-1} A_i \times \theta_i(X), \tag{1}$$

где $k=k_{n-1}...k_1k_0$; A_i - коэффициенты формы; C_i - произвольные константы; δ_t - логические операции; $X_i^{i_t}$ - переменная X_i в логической степени i_t ; $i=(i_{n-1},...i_0)_k$ - представление числа i по смешанным основаниям k; $\theta_i(X)$ - полиномиальные ортогональные функции. Операции $\{+,\times\}$ в (1) образуют поле на некотором множестве натуральных чисел, например, арифметические операции, выполняемые по модулю k_f . Для синтеза (1) используем дискретное ортогональное преобразование:

$$\begin{cases}
A = D \times F; \\
F = D^{-1} \times A,
\end{cases}$$
(2)

где F - характеристический вектор функции, A - вектор коэффициентов формы, D и D^{-1} - матрицы прямого и обратного преобразования размерности $k \times k$. Последние получаем следующим образом. Задаем ядро преобразования (2), которое определяет степенные операции и соответствующие матрицы W_t с элементами $w(i,j)=i^j$, $i,j=\overline{0,k_t-1}$,

где i (j) - номер строки (столбца). Строки (столбцы) матрицы W_t должны быть линейно независимы. Строим матрицу D^{-1} по рекуррентному правилу:

 $G_0 = W_0$; $G_{t+1} = W_t \otimes_t G_t$, $(t = \overline{0, n-2})$; $D^{-1} = C_n \delta_n G_{n-1}$, где \otimes_t - операция обобщенного кронекеровского произведения матриц [3]; C_n - матрица констант, состоящая из k одинаковых строк k произвольных констант. Выбор операций и их последовательности не должны вести к линейной зависимости срок (столбцов) G_t , а константы C_i задаем так, чтобы определитель D^{-1} был отличен от нуля. Матрицу D вычисляем из условия ортогональности: $D \times D^{-1} = E$, где E - единичная матрица размерности $k \times k$. Обращение матриц и проверку линейной зависимости строк осуществляем в поле используемых в (1) операций сложения и умножения.

эффективности Повышение вычислений В многозначной логике на вычислительных средствах с двоичным кодирование данных осуществим путем использования булевой мультипликативной формы. Для булевой формы степенные операции зададим в виде булевых матриц, а в качестве операции умножения × выберем булеву конъюнкцию & . В этом случае многозначные переменные X_i степенной операцией преобразуются к булевым значениям. Тем самым вычисление (1) сводится к суммированию коэффициентов A_i , для которых $\theta_i(X)$ не равны нулю. Минимизация мультипликативных форм осуществим путем выбора степенных операций. Количество обращаемых булевых матриц $N_B(k_t)$ размерности $k_t \times k_t$ может быть подсчитано по формуле:

$$N_B(k_t) = k_t! \left(2^{\frac{k_t(k_t-1)}{2}+1} - 1 \right).$$

Получен эффективный алгоритм, необходимый для минимизации (1) и позволяющий построить произвольную обращаемую булеву матрицу по ее номеру.

Использованные источники

- 1. Малюгин В.Д. Параллельные логические вычисления посредством арифметических полиномов. М.: Наука, 1997.
- 2. Выхованец В.С., Малюгин В.Д. Кратные логические вычисления //Автоматика и телемеханика. 1998. № 6. С. 163-171.

Тезисы докладов международной научно-практической конференции «Математические методы в образовании, науке и промышленности». Тирасполь, 1999. С. 52-53.

3. Выхованец В.С., Малюгин В.Д. Спектральные методы в логическом управлении //Тезисы докладов международной научно-технической конференции "Современные методы цифровой обработки сигналов в системах измерения, контроля, диагностики и управления", Минск, 1998.