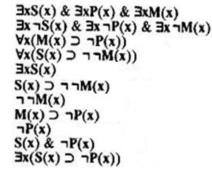
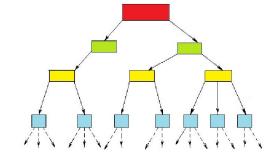


Notional models based on primary mental abstractions

Valery S. Vykhovanets

Institute of Control Sciences of the Russian Academy of Sciences,


Conceptual approach


Logical models Production rule models

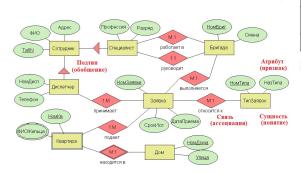
Frame models

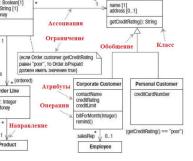

Semantic networks

Entity-Relationship models Object models

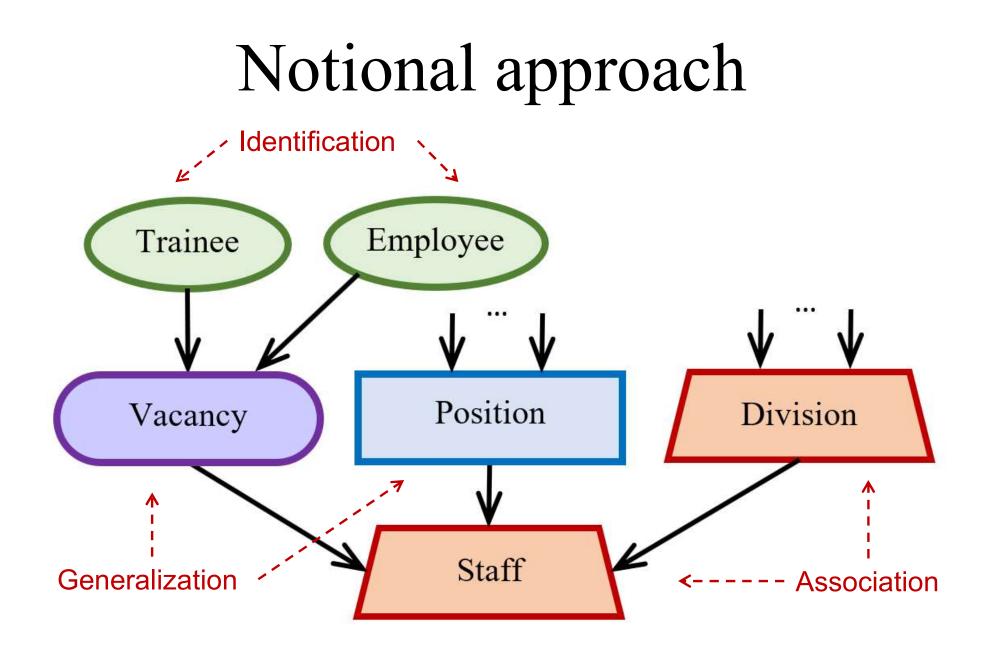
Имя слота	Значение слота	Тип значения слота Строка символов		
Имя	Иванов И. И.			
Рожден	01.01.1965	Дата		
Возраст	age(Рожден)	Процедура		
Специальность	Юрист	Строка символов		
Отдел	Отдел кадров	Строка символов		
Зарплата	80000	Число		
Адрес	ДОМ АДРЕС	Фрейм		

ateReceived: Date(0.


Order Line


Product

quantity: Intege


nrice: Money

umber: String [1] price: Money

Customer

Notions and Concepts A notion is a kind of thought that relates to a certain set of unique representations (entities) of the inner or outer world of a person (a subject domain).

A **concept** is a general notion, an abstract idea, consists of **instances**; each instance is characterized by a set of **properties**.

Aspects

1	2	e <u>E</u> d	it View Insert Format				ite <u>W</u> indow		
	-	E da		Arial		8 - B			z
							1 <u>2</u> <u>-</u>		(= <u>-</u> 2)
-		0	Task Name	Duration	Start	Finish	Predecessors	Sep 21, '08 Sep 28, '08 S M T W T F S S M T W	TFS
1	1	2	Gather data about Mortgag	2 days	Wed 9/24/08	Thu 9/25/08			
-	2		What is a derivative?	2 days	Wed 9/24/08	Thu 9/25/08			
	3	00	- Financial instruments	2 days?	Fri 9/26/08	Mon 9/29/08	1		
4	4		credit swaps	2 days	Fri 9/26/08	Mon 9/29/08			
-	5		interest rates	2 days	Fri 9/26/08	Mon 9/29/08			
6	6		treasury bills	2 days	Fri 9/26/08	Mon 9/29/08			
7	7		blank checks	1 day?	Fri 9/26/08	Fri 9/26/08			
8	3	~~	Committee Meetings	2 days	Tue 9/30/08	Wed 10/1/08	3		,
-	9	۰	Determine Oversight	2 days	Tue 9/30/08	Wed 10/1/08			
1	0		Golden Parachutes?	1 day	Tue 9/30/08	Tue 9/30/08			
1	1		Pro	1 day	Tue 9/30/08	Tue 9/30/08			
1	2		Con	1 day	Tue 9/30/08	Tue 9/30/08			
1	3		Wall Street Reaction	2 days	Wed 10/1/08	Thu 10/2/08	11		
1	4		Main Street Reaction	2 days	Wed 10/1/08	Thu 10/2/08	12		
1	5		Introduct final bill	0 days	Thu 10/2/08	Thu 10/2/08	14,13		of 10
	-								

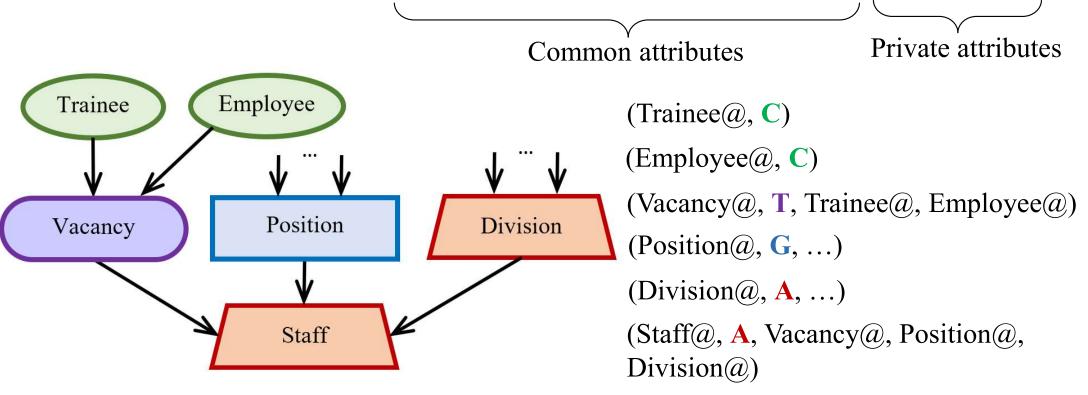
Notion of Project@Plan

Notion of Project@Design

Concept of Project

Mental abstractions **Identification** is *the replacement* of the entity with a notion-sign. **Generalization** (**Typification**) is *the union* of notions (notion-signs) so that the entities the G notion-generalization (notion-type) are the all entities of the generalized (typed) notions. Association is *the joining* of notions so that the entity of the notion-association includes one of the entities of the associated notions.

Α

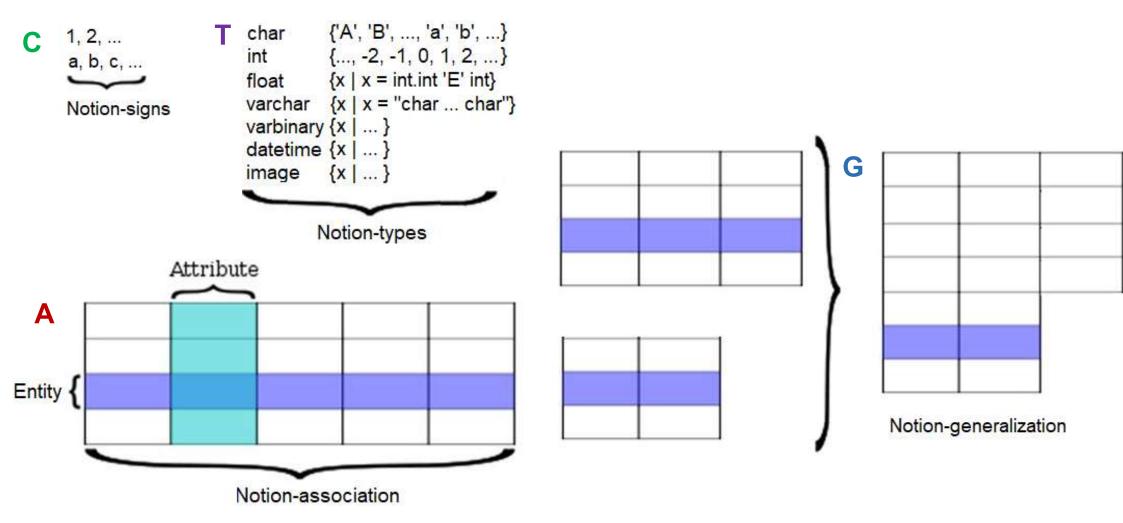

Example of notions

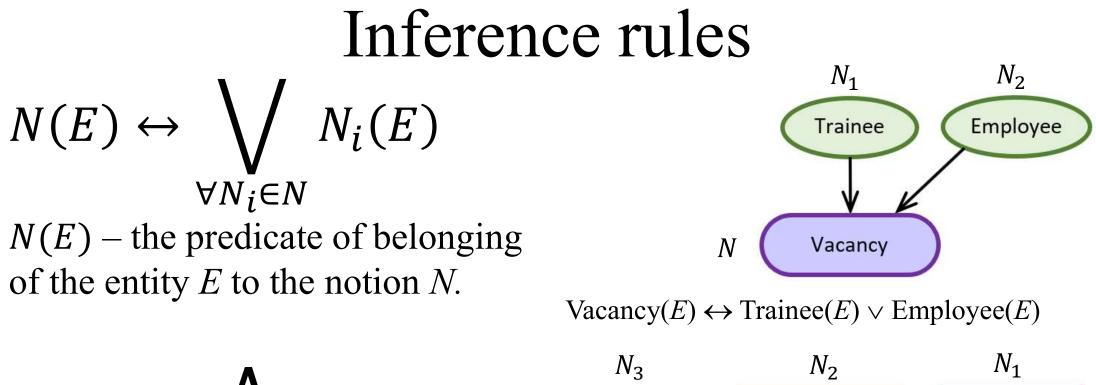
- **C** Notion-signs are Red, Long, One, First, Many, Often, Love, Other, etc.
- **T** Notion-type is Color, which union the notions-signs of Red, Green, Blue, etc.
- Notion-generalization is Tree, which is the union of the notion-entities of such notions as Birch, Beech, Fir, Pine, Poplar, etc.
- A Notion-association is Weather, which joins such notions as Place, Date, Temperature, Humidity, Wind, Cloudiness, etc.

Notional structures

Abstractions are C, T, G, A. Notion is Concept@Aspect.

A schema of a notion is (Concept@Aspect, Abstraction, Notion, ...).




Notional models

A notional model M of some subject domain is its notional structure S that is supplemented by a description of contents D of all notions in it, $M = \{S, D\},\$

where the contents *D* is the set of the enumerable or solvable sets of the notion-entities belonging to each notion in *S*.

Content of notions

Vacancy

Ν

$$N(E) \rightarrow \bigwedge_{\forall N_i \in N} N_i \{E\}$$
 (
 $N\{E\}$ – the predicate of the existence

the attribute N in the entity E.

Staff(*E*) \rightarrow Division {*E*} \land Position {*E*} \land Vacancy {*E*}

Staff

Position

Division

Declarative knowledge

Facts are true propositions with logical connectives AND (\land), OR (\lor), NOT (\neg), parentheses (and), and two types of atomic propositions:

- a predicate N(E) of belonging of the entity E to the notion N;

- $N[E] \circ V$, where N[E] is a functor that returns the entity of the attribute N of the entity E, \circ is a relation that allowed between entities N[E] and V.

Procedural knowledge

Experience

Declarative

knowledge

Procedural
knowledge

Abstraction operations:

[N1 : X1, ..., ND : XD] – new association, {N1 : X1, ..., ND : XD} – new generalization. Intensional operations:

X[] – number of attributes the notion X,
X[Y] – access to attribute Y of the entity X,
[X]Y – access to attribute X of the notion Y,
[]X – the notion of the entity X.
Extensional operations:

X{} – number of entities of the notion X,

- $X{Y}$ access to the entity Y the notion X,
- ${X}Y creation a entity X of the notion Y,$

{}X – deletion the entity X.

Conclusions

1) It is used an another semantic invariant in addition to formal logic – the notional language.

2) A concept can be presented as a set of eponymous notions in various aspects.

3) The notional language is better then the description logic.

Thank you for your attention!